A global view of meiotic double-strand break end resection
نویسندگان
چکیده
منابع مشابه
A global view of meiotic double-strand break end resection.
DNA double-strand breaks that initiate meiotic recombination are exonucleolytically processed. This 5'→3' resection is a central, conserved feature of recombination but remains poorly understood. To address this lack, we mapped resection endpoints genome-wide at high resolution in Saccharomyces cerevisiae Full-length resection requires Exo1 exonuclease and the DSB-responsive kinase Tel1, but no...
متن کاملThe Exonuclease Homolog OsRAD1 Promotes Accurate Meiotic Double-Strand Break Repair by Suppressing Nonhomologous End Joining.
During meiosis, programmed double-strand breaks (DSBs) are generated to initiate homologous recombination, which is crucial for faithful chromosome segregation. In yeast, Radiation sensitive1 (RAD1) acts together with Radiation sensitive9 (RAD9) and Hydroxyurea sensitive1 (HUS1) to facilitate meiotic recombination via cell-cycle checkpoint control. However, little is known about the meiotic fun...
متن کاملExcess Single-Stranded DNA Inhibits Meiotic Double-Strand Break Repair
During meiosis, self-inflicted DNA double-strand breaks (DSBs) are created by the protein Spo11 and repaired by homologous recombination leading to gene conversions and crossovers. Crossover formation is vital for the segregation of homologous chromosomes during the first meiotic division and requires the RecA orthologue, Dmc1. We analyzed repair during meiosis of site-specific DSBs created by ...
متن کاملMitosis, double strand break repair, and telomeres: A view from the end
Double strand break (DSB) repair is suppressed during mitosis because RNF8 and downstream DNA damage response (DDR) factors, including 53BP1, do not localize to mitotic chromatin. Discovery of the mitotic kinase-dependent mechanism that inhibits DSB repair during cell division was recently reported. It was shown that restoring mitotic DSB repair was detrimental, resulting in repair dependent ge...
متن کاملHuman CtIP Mediates Cell Cycle Control of DNA End Resection and Double Strand Break Repair*S⃞
In G(0) and G(1), DNA double strand breaks are repaired by nonhomologous end joining, whereas in S and G(2), they are also repaired by homologous recombination. The human CtIP protein controls double strand break (DSB) resection, an event that occurs effectively only in S/G(2) and that promotes homologous recombination but not non-homologous end joining. Here, we mutate a highly conserved cycli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Science
سال: 2017
ISSN: 0036-8075,1095-9203
DOI: 10.1126/science.aak9704